Traffic Noise Technical Report

I-35 Capital Express North Project

Travis and Williamson Counties, Texas

Austin District
CSJs: 0015-10-062 \& 0015-13-389

December 2020

Table of Contents

1.0 INTRODUCTION 1
2.0 TRAFFIC NOISE ANALYSIS 1
3.0 NOISE ABATEMENT MEASURES 7
4.0 NOISE PLANNING 13
5.0 CONCLUSION 14
List of Tables
Table 1: FHWA Noise Abatement Criteria (NAC) 2
Table 2: Traffic Noise Analysis Parameters 3
Table 3: Traffic Noise Levels [dB(A) Leq]. 4
Table 4: Noise Barrier Proposal (preliminary) 12
Table 5: Traffic Noise Contours [dB(A) Leq] 14

Appendices

Appendix A: Representative Noise Receivers Exhibit
Appendix B: Traffic Data Memo

1.0 INTRODUCTION

The Texas Department of Transportation (TxDOT) Austin District proposes improvements to Interstate 35 (I-35) from State Highway 45 North (SH 45N) in Williamson County to US Highway 290 East (US 290E) in Travis County. The proposed improvements would add one non-tolled managed lane in each direction, reconstruct intersections and bridges to increase bridge clearances and east/west mobility, and improve bicycle and pedestrian accommodations along l-35 frontage roads and at east/west crossings. The project length is approximately 11.5 miles.

2.0 TRAFFIC NOISE ANALYSIS

This analysis was accomplished in accordance with TxDOT's (Federal Highway Administration [FHWA] approved) Guidelines for Analysis and Abatement of Roadway Traffic Noise (2011).

Sound from highway traffic is generated primarily from a vehicle's tires, engine and exhaust. It is commonly measured in decibels and is expressed as "dB."

Sound occurs over a wide range of frequencies. However, not all frequencies are detectable by the human ear; therefore, an adjustment is made to the high and low frequencies to approximate the way an average person hears traffic sounds. This adjustment is called A-weighting and is expressed as "dB(A)."

Also, because traffic sound levels are never constant due to the changing number, type and speed of vehicles, a single value is used to represent the average or equivalent sound level and is expressed as "Leq."

The traffic noise analysis process includes the following elements:

- Identification of land use activity areas that might be impacted by traffic noise.
- Determination of existing noise levels.
- Prediction of future noise levels.
- Identification of possible noise impacts.
- Consideration and evaluation of measures to reduce noise impacts.

The FHWA has established the following Noise Abatement Criteria (NAC), shown in Table 1, for various land use activity areas that are used as one of two means to determine when a traffic noise impact would occur.

Table 1: FHWA Noise Abatement Criteria (NAC)

Activity Category	FHWA dB(A) Leq	Activity Description
A	57 (exterior)	Lands on which serenity and quiet are of extraordinary significance and serve an important public need and where the preservation of those qualities is essential if the area is to continue to serve its intended purpose.
B	67 (exterior)	Residential
C	Retive sports areas, amphitheaters, auditoriums, campgrounds, cemeteries, day care (exterior)	Activer centers, hospitals, libraries, medical facilities, parks, picnic areas, places of worship, playgrounds, public meeting rooms, public or non-profit institutional structures, radio studios, recording studios, recreation areas, Section 4(f) sites, schools, television studios, trails, and trail crossings.
D	52 (interior)	Auditoriums, day care centers, hospitals, libraries, medical facilities, places of worship, public meeting rooms, public or nonprofit institutional structures, radio studios, recording studios, schools, and television studios.
E	72 (exterior)	Hotels, motels, offices, restaurants/bars, and other developed lands, properties or activities not included in A-D or F.
F	Agriculture, airports, bus yards, emergency services, industrial, logging, maintenance facilities, manufacturing, mining, rail yards, retail facilities, shipyards, utilities (water resources, water treatment, electrical), and warehousing.	
G	--	Undeveloped lands that are not permitted. Source: Guidelines for Analysis and Abatement of Roadway Traffic Noise (TxDOT 2011)

A noise impact occurs when either the absolute or relative criterion is met:
Absolute criterion - the predicted noise level at the receiver approaches, equals, or exceeds the NAC. "Approach" is defined as one $\mathrm{dB}(\mathrm{A})$ below the NAC. For example, a noise impact would occur at a Category B residence if the noise level is predicted to be $66 \mathrm{~dB}(A)$ or above.

Relative criterion - the predicted noise level substantially exceeds the existing noise level at a receiver even though the predicted noise level does not approach, equal, or exceed the NAC. "Substantially exceeds" is defined as more than $10 \mathrm{~dB}(\mathrm{~A})$. For example: a noise impact would occur at a Category B residence if the existing level is $54 \mathrm{~dB}(\mathrm{~A})$ and the predicted level is $65 \mathrm{~dB}(\mathrm{~A})$.

When a traffic noise impact occurs, noise abatement measures must be considered. A noise abatement measure is any positive action taken to reduce the impact of traffic noise on an activity area.

The FHWA traffic noise modeling software was used to calculate existing and predicted traffic noise levels. The model primarily considers the number, type, and speed of vehicles; highway alignment and
grade; cuts, fills, and natural berms; surrounding terrain features; and the locations of activity areas likely to be impacted by the associated traffic noise.

Table 2 and Appendix B shows the traffic data utilized in the l-35 Capital Express North traffic noise models. The vehicle breakdown percentages for each corresponding section of the project (shown in Table 2) were gathered from the data tables supplied by the TxDOT Transportation Planning \& Programming (TPP) Division. As these data tables include the years of 2030 and 2050, a traffic line diagram was generated for the detailed traffic input with traffic volumes for the existing and design years of 2018 and 2038, respectively.

Table 2: Traffic Noise Analysis Parameters

Section/Type	Limits	Speed Limit	Design Hour Volume (K-Factor)	Average Annual Daily Traffic		Vehicle Distribution (\%) DHV		
				2030	2050	Light Duty	Medium Duty	Heavy Duty
Main Lanes: Section 2	S of William Cannon to N of Rundberg	$\begin{gathered} 60-70 \\ \mathrm{mph} \end{gathered}$	5.9	245,200	305,900	96.0	1.1	2.9
Main Lanes: Section 3	N of Rundberg to N of Howard*	70 mph	7.1	209,150	274,500	95.7	1.0	3.3
Frontage Roads: Section 7	S of US 290 Ramps to N of US 290 Ramps	55 mph	7.1	59,050	71,850	97.5	1.7	0.8
Frontage Roads: Section 8	N of US 290 Ramps to N of US 183 Ramps	55 mph	7.1	80,850	91,450	97.8	1.4	0.8
Frontage Roads: Section 9	N of US 183 Ramps to S of Howard Ramps	55 mph	7.1	95,250	124,650	98.0	1.4	0.6
Frontage Roads: Section 10	S of Howard Ramps to N of Howard*	55 mph	7.1	84,000	110,150	97.8	1.4	0.8
Notes: The supplied traffic data includes the entire l-35 Capital Express corridor; however, the above table only includes those sections that are within the I-35 Capital Express North project. *Assumes the extension to the north end of the project.								

Existing and predicted traffic noise levels were modeled at receiver locations (see Table 3 and Appendix A) that represent the land use activity areas adjacent to the project area that might be impacted by traffic noise and might potentially benefit from feasible and reasonable noise abatement. Receivers were placed closest to the ROW for locations having more than one area of frequent human activity. NAC category receivers based on interior noise levels were placed in a location closest to the proposed ROW, while still within the structural footprint.

Table 3: Traffic Noise Levels [dB(A) Leq]

Receiver ID	Land Use	NAC Category	NAC Level	Predicted Traffic Noise Level [dB(A) Leq]			Noise Impact
				$\begin{aligned} & \hline \text { Existing } \\ & \text { (2018) } \end{aligned}$	Predicted (2038)	Change $(+/-)$	
R1	Hotel	E	72	62	63	+1	N
R2	College	C	67	64	65	+1	N
R3	Restaurant	E	72	67	72	+5	Y
R5	Apartment	B	67	65	68	+3	Y
R6	Restaurant	E	72	71	77	+6	Y
R7	Restaurant	E	72	73	77	+4	Y
R8	Place of Worship	D	52	37	40	+3	N
R9	Apartment	B	67	68	71	+3	Y
R10	Restaurant	E	72	62	65	+3	N
R11	Hotel	E	72	69	71	+2	Y
R12	Cemetery	C	67	58	63	+5	N
R13	Medical Facility	D	52	33	37	+4	N
R14	School	C	67	65	68	+3	Y
R15	Apartment	B	67	69	75	+6	Y
R16	Apartment	B	67	72	75	+3	Y
R17	Apartment	B	67	73	75	+2	Y
R18	School	D	52	31	33	+2	N
R19	Restaurant	E	72	67	69	+2	N
R20	Place of Worship	D	52	29	32	+3	N
R21	Place of Worship	D	52	35	38	+3	N
R22	Cemetery	C	67	71	73	+2	Y
R23	Restaurant	E	72	71	74	+3	Y
R24	School	C	67	59	60	+1	N
R25	Restaurant	E	72	75	77	+2	Y
R26	Memorial	C	67	77	78	+1	Y
R27	Restaurant	E	72	65	69	+4	N

Receiver ID	Land Use	NAC Category	NAC Level	Predicted Traffic Noise Level [dB(A) Leq]			Noise Impact
				$\begin{aligned} & \text { Existing } \\ & \text { (2018) } \end{aligned}$	$\begin{gathered} \text { Predicted } \\ (2038) \\ \hline \end{gathered}$	Change (+/-)	
R28	Restaurant	E	72	68	70	+2	N
R29	Hotel	E	72	62	67	+5	N
R30	Non-profit Institutional Structure	C	67	61	67	+6	Y
R31	Medical Facility	D	52	32	35	+3	N
R32	Restaurant	E	72	67	73	+6	Y
R33	Restaurant	E	72	67	72	+5	Y
R34	Hotel	E	72	67	69	+2	N
R35	Hotel	E	72	67	68	+1	N
R36	Hotel	E	72	67	68	+1	N
R37	Apartment	B	67	71	73	+2	Y
R38	Public Institutional Structure	C	67	75	76	+1	Y
R39	Non-profit Institutional Structure	D	52	31	34	+3	N
R40	Single Family Residential	B	67	71	72	+1	Y
R41	Place of Worship	D	52	38	39	+1	N
R42	Single Family Residential	B	67	73	74	+1	Y
R43	Single Family Residential	B	67	75	76	+1	Y
R44	Single Family Residential	B	67	70	72	+2	Y
R45	Single Family Residential	B	67	76	78	+2	Y
R46	Single Family Residential	B	67	72	76	+4	Y
R47	Single Family Residential	B	67	72	72	0	Y
R48	Apartment	B	67	71	76	+5	Y
R49	Hotel	E	72	74	75	+1	Y
R50	Place of Worship	D	52	32	35	+3	N
R51	Medical Facility	C	67	75	76	+1	Y
R52	Place of Worship	D	52	40	42	+2	N
R53	School	D	52	31	33	+2	N
R54	Hotel	E	72	69	70	+1	N
R55	Restaurant	E	72	71	72	+1	Y

Receiver ID	Land Use	NAC Category	NAC Level	Predicted Traffic Noise Level [dB(A) Leq]			Noise Impact
				$\begin{aligned} & \text { Existing } \\ & \text { (2018) } \end{aligned}$	$\begin{gathered} \text { Predicted } \\ (2038) \end{gathered}$	Change (+/-)	
R56	Hotel	E	72	69	71	+2	Y
R57	Place of Worship	D	52	50	51	+1	Y
R58	Public Institutional Structure	D	52	38	39	+1	N
R59	Apartment	B	67	73	75	+2	Y
R60	Apartment	B	67	73	75	+2	Y
R61	Funeral Home	D	52	39	42	+3	N
R62	Hotel	E	72	73	76	+3	Y
R63	Public Institutional Structure	D	52	37	40	+3	N
R64	Medical Facility	D	52	39	42	+3	N
R65	Medical Facility	D	52	49	51	+2	Y
R66	Day Care	C	67	67	70	+3	Y
R67	Apartment	B	67	75	79	+4	Y
R68	Hotel	E	72	71	73	+2	Y
R69	Hotel	E	72	72	74	+2	Y
R70	Hotel	E	72	66	68	+2	N
R71	Hotel	E	72	71	73	+2	Y
R72	Hotel	E	72	69	72	+3	Y
R73	Apartment	B	67	74	79	+5	Y
R74	Public Institutional Structure	C	67	71	72	+1	Y
R75	Funeral Home	D	52	35	36	+1	N
R76	Hotel	E	72	67	69	+2	N
R77	Place of Worship	C	67	65	67	+2	Y
R78	Hotel	E	72	65	67	+2	N
R79	Restaurant	E	72	69	70	+1	N
R80	Single Family Residential	B	67	72	74	+2	Y
R81	Hotel	E	72	68	71	+3	Y
R82	Hotel	E	72	64	65	+1	N
R83	Hotel	E	72	63	63	0	N
R84	Hotel	E	72	69	71	+2	Y
R85	Restaurant	E	72	69	70	+1	N
R86	Restaurant	E	72	71	73	+2	Y
R87	Hotel	E	72	71	72	+1	Y

Receiver ID	Land Use	NAC Category	NAC Level	Predicted Traffic Noise Level [dB(A) Leq]			Noise Impact
				Existing (2018)	$\begin{gathered} \text { Predicted } \\ (2038) \\ \hline \end{gathered}$	Change $(+/-)$	
R88	Restaurant	E	72	70	70	0	N
R89	Hotel	E	72	69	69	0	N
R90	Restaurant	E	72	72	71	-1	Y

Note: Per TxDOT's 2011 Guidelines for Analysis and Abatement of Roadway Traffic Noise, an interior noise reduction factor of $25 \mathrm{~dB}(\mathrm{~A})$ was applied to receivers R57 and R65, and an interior noise reduction factor of $35 \mathrm{~dB}(\mathrm{~A})$ was applied to all other NAC category "D" receivers.

3.0 NOISE ABATEMENT MEASURES

As indicated in Table 3, the proposed project would result in a traffic noise impact; therefore, the following noise abatement measures were considered: traffic management, alteration of horizontal and/or vertical alignments, acquisition of undeveloped property to act as a buffer zone, and the construction of noise barriers.

Before any abatement measure can be proposed for incorporation into the proposed project, it must be both feasible and reasonable. In order to be "feasible," the abatement measure must be able to reduce the noise level at greater than 50% of impacted, first row receivers by at least five $\mathrm{dB}(\mathrm{A})$; and to be "reasonable," it must not exceed the cost-effectiveness criterion of $\$ 25,000$ for each receiver that would benefit by a reduction of at least five $\mathrm{dB}(\mathrm{A})$ and the abatement measure must be able to reduce the noise level for at least one impacted, first row receiver by at least seven $\mathrm{dB}(\mathrm{A})$.

Traffic management - Control devices could be used to reduce the speed of the traffic; however, the minor benefit of one $\mathrm{dB}(\mathrm{A})$ per five mph reduction in speed does not outweigh the associated increase in congestion and air pollution. Other measures such as time or use restrictions for certain vehicles are prohibited on state highways.

Alteration of horizontal and/or vertical alignments - Any alteration of the existing alignment would displace existing businesses and residences, require additional ROW and not be cost effective/reasonable.

Buffer zone - The acquisition of undeveloped property to act as a buffer zone is designed to avoid rather than abate traffic noise impacts and, therefore, is not feasible.

Noise barriers - This is the most commonly used noise abatement measure. Noise barriers were evaluated for each of the impacted receiver locations.

A noise barrier would not be feasible and reasonable for the following impacted receivers and, therefore, is not proposed for incorporation into the proposed project:

Residences

R40, R44, R47, and R80: These receivers represent exterior areas at single, isolated residences located throughout the l-35 corridor. For each of these receivers, a noise barrier 20 feet in height would not achieve the minimum feasible reduction of five $\mathrm{dB}(\mathrm{A})$ or achieve the noise reduction design goal of at least seven $\mathrm{dB}(\mathrm{A})$ at one or more receivers. Therefore, a barrier at these locations is not proposed for incorporation into the project.

R5 and R9: These receivers represent exterior areas (i.e., pools or balconies) at various apartment complexes located throughout the l-35 corridor. For all of these receivers, a noise barrier 20 feet in height would not achieve the minimum feasible reduction of five $\mathrm{dB}(\mathrm{A})$ at greater than 50% of impacted, first row receivers and reduce the noise level at one or more receivers by at least seven $\mathrm{dB}(\mathrm{A})$. Therefore, a barrier at these locations is not proposed for incorporation into the project.

R37: This receiver represents exterior balconies at an apartment complex located along the l-35 corridor. For this receiver, a noise barrier 20 feet in height would not achieve the minimum feasible reduction of five $\mathrm{dB}(\mathrm{A})$ at greater than 50% of impacted, first row receivers; however, the barrier would reduce the noise level at one or more receivers by at least seven $\mathrm{dB}(\mathrm{A})$. Therefore, a barrier at this location is not proposed for incorporation into the project.

R16: This receiver represents an exterior apartment balcony. For this receiver, a noise barrier 20 feet in height would achieve the minimum feasible reduction of five $\mathrm{dB}(\mathrm{A})$ at greater than 50% of impacted, first row receivers; however, the barrier would not reduce the noise level at one or more receivers by at least seven $\mathrm{dB}(\mathrm{A})$. Therefore, a barrier at this location is not proposed for incorporation into the project.

Hotels/Motels

R11, R49, R56, R62, R68-R69, R71-R72, R81, R84, and R87: These receivers represent exterior areas (i.e., pools or seating areas) at various hotels and motels located throughout the l-35 corridor. For all of these receivers, a noise barrier 20 feet in height would not achieve the minimum feasible reduction of five $\mathrm{dB}(\mathrm{A})$ at greater than 50% of impacted, first row receivers and reduce the noise level at one or more receivers by at least seven $\mathrm{dB}(\mathrm{A})$. Therefore, a barrier at these locations is not proposed for incorporation into the project.

Restaurants/Businesses

R3, R6, R23, R25, R32, R55, R86, and R90: These receivers represent exterior dining areas at various restaurants and food trucks located throughout the l-35 corridor. For all of these receivers, a noise barrier 20 feet in height would not achieve the minimum feasible reduction of five $\mathrm{dB}(\mathrm{A})$ at greater than 50% of impacted, first row receivers and reduce the noise level at one or more receivers by at least seven $d B(A)$. Therefore, a barrier at these locations is not proposed for incorporation into the project.

R7: This receiver represents an outdoor seating area at a restaurant. A noise barrier 12 feet in height would achieve the minimum feasible reduction of five $\mathrm{dB}(\mathrm{A})$ and reduce the noise level by at least seven $d B(A)$; however, the cost of the barrier would exceed the reasonableness criteria of $\$ 25,000$ per benefitted receiver. Therefore, a barrier at this location is not proposed for incorporation into the project.

R33: This receiver represents an exterior dining area at a restaurant located along the I-35 corridor. For this receiver, a noise barrier 20 feet in height would achieve the minimum feasible reduction of five $\mathrm{dB}(\mathrm{A})$; however, the barrier would not reduce the noise level by at least seven $\mathrm{dB}(\mathrm{A})$. Therefore, a barrier at this location is not proposed for incorporation into the project.

Churches

R57 and R77: These receivers represent interior (R57) and exterior (R77 - playground) areas at two churches located throughout the I-35 corridor. For both of these receivers, a noise barrier 20 feet in height would not achieve the minimum feasible reduction of five $\mathrm{dB}(\mathrm{A})$ at greater than 50% of impacted, first row receivers and reduce the noise level at one or more receivers by at least seven $\mathrm{dB}(\mathrm{A})$. Therefore, a barrier at these locations is not proposed for incorporation into the project.

Schools

R14 and R66: These receivers represent a basketball court at Renaissance Academy (R14), and a playground area at Cedars International Academy (R66). For these receivers, a noise barrier 20 feet in height would not achieve the minimum feasible reduction of five $\mathrm{dB}(\mathrm{A})$ at greater than 50% of impacted, first row receivers and reduce the noise level at one or more receivers by at least seven $d B(A)$. Therefore, a barrier at these locations is not proposed for incorporation into the project.

Public Institutional Structures

R26: This receiver represents a seating area at a police memorial located on the west side of I-35 in front of the Walmart parking lot. A noise barrier 20 feet in height would achieve the minimum feasible
reduction of five $\mathrm{dB}(\mathrm{A})$ at greater than 50\% of impacted, first row receivers; however, the barrier would not reduce the noise level at one or more receivers by at least seven $\mathrm{dB}(\mathrm{A})$. Therefore, a barrier at this location is not proposed for incorporation into the project.

R30 and R74: These receivers represent an outdoor seating area at the Boy Scouts of America facility (R30) and an outdoor seating area at the TxDOT Austin District campus (R74). For these receivers, a noise barrier 20 feet in height would not achieve the minimum feasible reduction of five $d B(A)$ at greater than 50\% of impacted, first row receivers and reduce the noise level at one or more receivers by at least seven $\mathrm{dB}(\mathrm{A})$. Therefore, a barrier at these locations is not proposed for incorporation into the project.

R38: This receiver represents a volleyball court at the Texas Commission on Environmental Quality campus. A noise barrier 10 feet in height would achieve the minimum feasible reduction of five $d B(A)$ at greater than 50\% of impacted, first row receivers and reduce the noise level at one or more receivers by at least seven $\mathrm{dB}(\mathrm{A})$. Based on the size of the average residential lot size of 0.30 acre in the corridor, it was determined that the equivalent number of receivers for the impacted exterior activity area is 1 receiver; thus, the feasible noise barrier of 388 feet in length and 10 feet in height would exceed the reasonableness criteria of $\$ 25,000$ per benefitted receiver. Therefore, a barrier at this location is not proposed for incorporation into the project.

Medical Facilities

R51: This receiver represents an outdoor seating area at Everose Healthcare. A barrier could not be feasibly constructed at this location due to location of the driveway access. Therefore, a barrier at this location is not proposed for incorporation into the project.

R65: This receiver represents an interior location at The Source medical facility. A noise barrier 20 feet in height would not achieve the minimum feasible reduction of five $\mathrm{dB}(\mathrm{A})$ at the representative receiver or achieve the noise reduction design goal of at least seven $\mathrm{dB}(\mathrm{A})$ at one or more receivers. Therefore, a barrier at this location is not proposed for incorporation into the project.

Cemetery (R22): This receiver represents the centroid of the Memorial Hill Cemetery property. A noise barrier 20 feet in height would not achieve the minimum feasible reduction of five $d B(A)$ at this receiver or achieve the noise reduction design goal of at least seven $\mathrm{dB}(\mathrm{A})$ at one or more receivers. Therefore, a barrier at this location is not proposed for incorporation into the project.

Noise barriers would be feasible and reasonable for the following impacted receivers and, therefore are proposed for incorporation into the proposed project (see Table 4):

Lantower Ambrosio Apartment Complex (R15): This receiver represents the Lantower Ambrosio Apartment complex located on the east side of I-35 south of Wells Branch Parkway. The representative receiver was placed on the outdoor porch of a first-row apartment building and additional receivers were placed on other $1^{\text {st }}, 2^{\text {nd }}$, and $3^{\text {rd }}$ story balconies for purposes of the barrier analysis. Based on preliminary calculations, a barrier 510 feet in length and 16 feet in height would reduce noise levels by at least five $\mathrm{dB}(\mathrm{A})$ for 10 of the 15 impacted, first-row receivers and reduce the noise level at one or more receivers by at least seven $\mathrm{dB}(\mathrm{A})$. The total cost of the barrier is $\$ 146,880$ and a total of 18 receivers were benefitted, at a cost of $\$ 8,160$ per benefitted receiver. Therefore, a barrier at this location is proposed for incorporation into the project.

The Vineyard Apartment Complex (R17): This receiver represents the Vineyard Apartment Complex on the east side of I-35 north of The Lakes Boulevard. The representative receiver was placed on the outdoor porch of a first-row apartment building and additional receivers were placed on other $1^{\text {st }} 2^{\text {nd }}$, and $3^{r d}$ story balconies for purposes of the barrier analysis. Based on preliminary calculations, a barrier 478 feet in length and 16 feet in height would reduce noise levels by at least five $d B(A)$ for 12 of the 18 impacted, first-row receivers and reduce the noise level at one or more receivers by at least seven $\mathrm{dB}(\mathrm{A})$. The total cost of the barrier is $\$ 137,664$ and a total of 21 receivers were benefitted, at a cost of $\$ 6,555$ per benefitted receiver. Therefore, a barrier at this location is proposed for incorporation into the project.

North Oaks Neighborhood (R42-R43, and R45-R46): These receivers represent the North Oaks residential neighborhood on the east side of I-35 north of Braker Lane. The representative receivers were placed in residential backyards, and additional first and second-row receivers were included in the barrier analysis. Based on preliminary calculations, a segmented barrier 2,837 feet in length and 16 feet tall would reduce noise levels by at least five $\mathrm{dB}(\mathrm{A})$ for 25 of the 31 impacted, first-row receivers and reduce the noise level at one or more receivers by at least seven $\mathrm{dB}(\mathrm{A})$. The total cost of the barrier is $\$ 817,056$ and a total of 37 receivers were benefitted, at a cost of $\$ 22,082$ per benefitted receiver. However, a segmented barrier 2,837 feet in length and 20 feet tall would reduce noise levels by at least five $\mathrm{dB}(\mathrm{A})$ for 25 of the 31 impacted, first-row receivers and reduce the noise level at one or more receivers by at least seven $\mathrm{dB}(\mathrm{A})$. The total cost of this barrier is $\$ 1,021,320$ and a total of 42 receivers were benefitted, at a cost of $\$ 24,317$ per benefitted receiver. Because a 20 -foot wall would benefit more receivers, it is proposed for incorporation into the project at this location.

Cricket Hollow Apartment Complex (R48): This receiver represents the Cricket Hollow Apartment complex located on the east side of I-35 north of Plaza Drive. The representative receiver was placed on the porch of a $1^{\text {st }}$ floor unit and additional receivers were placed on other $1^{\text {st }}$ and $2^{\text {nd }}$ story balconies
for purposes of the barrier analysis. Based on preliminary calculations, a barrier 205 feet in length and 16 feet in height would reduce noise levels by at least five $\mathrm{dB}(\mathrm{A})$ for seven of the eight impacted, firstrow receivers and reduce the noise level at one or more receivers by at least seven $\mathrm{dB}(\mathrm{A})$. The total cost of the barrier is $\$ 59,040$ and a total of ten receivers were benefitted, at a cost of $\$ 5,904$ per benefitted receiver. Therefore, a barrier at this location is proposed for incorporation into the project.

Starburst and Orbit Apartment Complexes (R59 and R60): These receivers represent the adjacent Starburst Apartment complex and Orbit Apartment complex located on the west side of I-35 south of Rundberg Lane. The representative receivers were placed on the outdoor porch of the first-row apartment buildings and additional receivers were placed on other $1^{\text {st, }}, 2^{\text {nd }}$, and $3^{\text {rd }}$ story balconies for purposes of the barrier analyses. Though these apartments are on separate parcels, they were analyzed both together and separately for noise abatement. Because a wall would not be feasible for R59 in a standalone analysis, a combined barrier analysis is proposed for maximum abatement. Based on preliminary calculations, a segmented barrier totaling 912 feet in length and 20 feet in height would reduce noise levels by at least five $\mathrm{dB}(\mathrm{A})$ for 31 of the 52 impacted, first-row receivers and reduce the noise level at one or more receivers by at least seven $\mathrm{dB}(\mathrm{A})$. The total cost of the barrier is $\$ 328,320$ and a total of 59 receivers were benefitted, at a cost of $\$ 5,565$ per benefitted receiver. Therefore, a barrier at this location is proposed for incorporation into the project.

Woodland Heights Apartment Complex (R67): This receiver represents the Woodland Heights Apartment complex located on the west side of I-35 north of Powell Lane. The representative receiver was placed on the porch of a $1^{\text {st }}$ floor unit and additional receivers were placed on other $1^{\text {st }}$ and $2^{\text {nd }}$ story balconies for purposes of the barrier analysis. Based on preliminary calculations, a barrier 453 feet in length and 14 feet in height would reduce noise levels by at least five $\mathrm{dB}(\mathrm{A})$ for 23 of the 38 impacted, first-row receivers and reduce the noise level at one or more receivers by at least seven $\mathrm{dB}(\mathrm{A})$. The total cost of the barrier is $\$ 114,156$ and a total of 23 receivers were benefitted, at a cost of $\$ 4,963$ per benefitted receiver. Therefore, a barrier at this location is proposed for incorporation into the project.

Towne Oaks 1 Apartment Complex (R73): This receiver represents the Towne Oaks 1 Apartment complex located on the west side of I-35 north of US 183. The representative receiver was placed at the community pool and additional receivers were placed on other $1^{\text {st }}$ story porches for purposes of the barrier analysis. Based on preliminary calculations, a segmented barrier totaling 257 feet in length and 10 feet in height would reduce noise levels by at least five $d B(A)$ for two of the three impacted, first-row receivers and reduce the noise level at one or more receivers by at least seven $\mathrm{dB}(\mathrm{A})$. The total cost of the barrier is $\$ 46,260$ and a total of two receivers were benefitted, at a cost of $\$ 23,130$
per benefitted receiver. Therefore, a barrier at this location is proposed for incorporation into the project.

Table 4: Noise Barrier Proposal (preliminary)

Traffic Noise Barrier						
Lantower Ambrosio Apartment Complex	R15	18	16	510	\$146,880	\$8,160
The Vineyard Apartment Complex	R17	21	16	478	\$137,664	\$6,555
North Oaks Neighborhood	$\begin{aligned} & \text { R42-43, } \\ & \text { R45-R46 } \\ & \hline \end{aligned}$	42	20	2,837	\$1,021,320	\$24,317
Cricket Hollow Apartment Complex	R48	10	16	205	\$59,040	\$5,904
Starburst and Orbit Apartment Complexes	R59, R60	59	20	912	\$328,320	\$5,565
Woodland Heights Apartment Complex	R67	23	14	453	\$114,156	\$4,963
Towne Oaks 1 Apartment Complex	R73	2	10	257	\$46,260	\$23,130

Any subsequent project design changes may require a reevaluation of this preliminary noise barrier proposal. The final decision to construct the proposed noise barriers would not be made until completion of the project design, utility evaluation and polling of adjacent property owners. Appendix A depicts the representative noise receivers, as well as the proposed noise barriers that would benefit impacted receivers.

4.0 NOISE PLANNING

To avoid noise impacts that may result from future development of properties adjacent to the proposed project, local officials responsible for land use control programs must ensure, to the maximum extent possible, no new activities are planned or constructed along or within the following predicted (2038) noise impact contours (see Table 5).

Table 5: Traffic Noise Contours [dB(A) Leq]

Location	Distance from ROW	
	NAC Category B \& C $66 \mathrm{~dB}(\mathrm{~A})$	NAC Category E $71 \mathrm{~dB}(\mathrm{~A})$
I-35 (east side) - 280 feet south of Picadilly Dr	>440 feet*	240 feet
I-35 (west side) - 275 feet north of Fleischer Dr	>180 feet*	180 feet
I-35 (east side) - 900 feet south of Ridge Blvd	540 feet	260 feet
I-35 (east side) - 135 feet south of Bowery Trl	>300 feet	220 feet
I-35 (east side) - 200 feet south of Ruby Dr	>200 feet*	120 feet
I-35 (west side) - 135 feet south of Starburst Apts	>300 feet	120 feet
I-35 (east side) - 65 feet south of Hermitage Dr	>220 feet*	160 feet
yond the extent of the undeveloped parcel boundary		

5.0 CONCLUSION

Based on this modeled noise analysis, there are 51 projected noise impacts at representative receivers within the corridor. Barrier analyses were conducted, and results indicated that a barrier would be feasible and reasonable for eleven of the impacted representative receivers.

Noise associated with the construction of the proposed project is difficult to predict. Heavy machinery, the major source of noise in construction, is constantly moving in unpredictable patterns. However, construction normally occurs during daylight hours when occasional loud noises are more tolerable. None of the receivers are expected to be exposed to construction noise for a long duration; therefore, any extended disruption of normal activities is expected. Provisions would be included in the plans and specifications that require the contractor to make every reasonable effort to minimize construction noise through abatement measures such as work-hour controls and proper maintenance of muffler systems.

A copy of this traffic noise analysis would be made available to local officials. On the date of approval of this document (Date of Public Knowledge), FHWA and TxDOT are no longer responsible for providing noise abatement for new development adjacent to the proposed project.

APPENDIX A

APPENDIX B

TRAFFIC DATA MEMO

TPP TRAFFIC DATA TABLES
FOR VEHICLE BREAKDOWN PERCENTAGES

TRAFFIC ANALYSIS FOR HIGHWAY DESIGN
Austin Distric
August 22, 2019

TRAFFIC ANALYSIS FOR HIGHWAY DESIGN

TRAFFIC ANALYSIS FOR HIGHWAY DESIGN

TRAFFIC ANALYSIS FOR HIGHWAY DESIGN

SECTION BREAKLINES

TO ACCOMPANY TPP TRAFFIC DATA TABLES

not to scale
Atgalmance

2030, 2050, 2060 forecasteo no-bullo averace daily traff te VOLUMES AND TURNING MOVEMENTS AT SPECIF IED POINTS ALON ANO US 290 FROM AIRPORT BLVO TO US 193

EXISTING (2018) TRAFFIC LINE DIAGRAM
FOR DETAILED TRAFFIC INPUT

2018 EXISTING CONFIGURATION


```
2018 FORECASTED AVERAGE DAILY TRAFF IC VOLUMES 
AND TURNING MOVEMENTS AT SPECIFIED POINTS ALON
AND US 290 FROM AIRPORT BLVD To US 183
and us 290 FROM AIRPORT BLVD TO US 183
```

NOT TO SCALE
Atonunas

2018 EXISTING CONFIGURATION

2018 EXISTING CONFIGURATION

NOT TO SCALE
Atomunce

2018 FORECASTED AVERAGE DAILY TRAFFIC VOLUMES
AND TURNING MOVEMENTS AT SPECIFIED POINTS ALON
IH-35 FROM MAIN ST TO HESTER'S CROSSIN ROAD
AND US 290 FROM AIRPORT BLVD TO US 183

2018 EXISTING CONFIGURATION


```
2018 FORECASTED AVERAGE DAILY TRAFFIC VOLUMES
MND TURNNNG MOVEMENTS AT SLECIF IED POINTT ALON
ANO US 290 FROM AIRPORT BLVD TO US 183
AND US 290 FRom Airport blvo to us 183
```

NOT TO SCALE
Atgaluancs

2018 EXISTING CONFIGURATION


```
2018 FORECASTED AVERAGE DAILY TRAFFIC VOLUMES
MND TURNNNG MOVEMENTS AT SLECIF IED POINTT ALON
AND US 290 FROM AIRPORT BLVD TO US 183
```

NOT TO SCALE
Atgaluanct

2018 EXISTING CONFIGURATION

2018 EXISTING CONFIGURATION


```
2018 FORECASTED AVERAGE DAILY TRAFFIC VOLUMES 
ND TURNING NOVEMENTS AT SPECIFIED POINTS ALONG
AND US 290 FROM AIRPORT BLVD TO US 183
```

NOT TO SCALE
Atonunas

2018 EXISTING CONFIGURATION

NOT TO SCALE
Atgaluancs

```
2018 FORECASTED AVERAGE DAILY TRAFF IC VOLUMES
MND TURNNNG MOVEMENTS AT SLECIFIED POINTT ALON
AH-35 FROM MAIN ST TO HESTER'S CROSSING
And US 290 FROM AIRPORT BLVD To US 183
```


2018 EXISTING CONFIGURATION

NOT TO SCALE
Atanuance

```
018 FORECASTED AVERAGE DAILY TRAFFIC VOLUMES
AND TURNING MOVEMENTS AT SPECIFIED POINTS ALON
AND US 290 FROM AIRPORT BLVD To US 183
AND US 290 FROM AIRPORT BLVD TO US 183
```

CAPITAL EXPRESS
CAPITAL EXPRESS 2018 EXISTING CONFIGLAR VOLUMES
24 HOUR

2018 EXISTING CONFIGURATION


```
2018 FORECASTED AVERAGE DAILY TRAFFIC VOLUMES
AND TURNING MOVEMENTS AT SPECIFIED POINTS ALON
AND US 290 FROM AIRPORT BLVD To US I Im
```

NOT TO SCALE
Atganance

2018 EXISTING CONFIGURATION


```
2018 FORECASTED AVERAGE DAILY TRAFF IC VOLUMES 
MND TURNNNG MOVEMENTS AT SLECIF IED POINTT ALON
ANO US 290 FROM AIRPORT BLVD TO US 183
```

NOT TO SCALE
Atomancs

2018 EXISTING CONFIGURATION

NOT TO SCALE
Atgaluanct

2018 EXISTING CONFIGURATION


```
2018 FORECASTED AVERAGE DAILY TRAFFIC VOLUMES 
AND TURNING MOVEMENTS AT SPECIFIED POINTS ALON
IH-35 FROM MAIN ST TO HESTER'S CROSSING
```

NOT TO SCALE
Atonunas

2018 EXISTING CONFIGURATION


```
2018 FORECASTED AVERAGE DAILY TRAFFIC VOLUMES 
MND TURNNNG MOVEMENTS AT SLECIF IED POINTT ALON
ANO US 290 FROM AIRPORT BLVD TO US 183
```

NOT TO SCALE
Atgaluanct

2018 EXISTING CONFIGURATION

2018 EXISTING CONFIGURATION

2018 EXISTING CONFIGURATION

2018 EXISTING CONFIGURATION

NOT TO SCALE
Atgaluanct

2018 EXISTING CONFIGURATION

NOT TO SCALE
Atgaluancs

```
2018 FORECASTED AVERAGE DAILY TRAFFIC VOLUMES
MND TURNNNG MOVEMENTS AT SLECIF IED POINTT ALON
ANO US 290 FROM AIRPORT BLVD TO US 183
```


NOT TO SCALE
Atganancs

```
2018 FORECASTED AVERAGE DAILY TRAFFIC VOLUMES 
MND TURNNNG MOVEMENTS AT SLECIF IED POINTT ALON
ANO US 290 FROM AIRPORT BLVD To US 183
AND US 290 FROM AIRPORT BLVD TO US 183
```

2018 EXISTING CONFIGURATION

NOT TO SCALE
Atgaluancs

```
2018 FORECASTED AVERAGE DAILY TRAFF IC VOLUMES 
MND TURNNNG MOVEMENTS AT SLECIF IED POINTT ALON
AND US 290 FROM AIRPORT BLVD To US 183
```


2018 EXISTING CONFIGURATION


```
2018 FORECASTED AVERAGE DAILY TRAFF IC VOLUMES 
MND TURNNNG MOVEMENTS AT SLECIF IED POINTT ALON
ANO US 290 FROM AIRPORT BLVD TO US 183
```

NOT TO SCALE
Atomancs

2018 EXISTING CONFIGURATION

2018 EXISTING CONFIGURATION

NOT TO SCALE
Atgaluancs

PROPOSED (2038) TRAFFIC LINE DIAGRAM
FOR DETAILED TRAFFIC INPUT

Updates since the May 2021 Public Hearing.

Traffic Noise Technical Report

I-35 Capital Express North Project

Travis and Williamson Counties, Texas
Austin District
CSJs: 0015-10-062 \& 0015-13-389

June 2021

Table of Contents

1.0 INTRODUCTION. 1
2.0 TRAFFIC NOISE ANALYSIS 1
3.0 NOISE ABATEMENT MEASURES 7
4.0 NOISE PLANNING. 14
5.0 CONCLUSION 14
List of Tables
Table 1: FHWA Noise Abatement Criteria (NAC) 2
Table 2: Traffic Noise Analysis Parameters 3
Table 3: Traffic Noise Levels [dB(A) Leq]. 4
Table 4: Noise Barrier Proposal (preliminary) 12
Table 5: Traffic Noise Contours [dB(A) Leq]. 14

Appendices

Appendix A: Representative Noise Receivers Exhibit

Appendix B: Traffic Data Memo
Appendix C: Future Development Plats

1.0 INTRODUCTION

The Texas Department of Transportation (TxDOT) Austin District proposes improvements to Interstate 35 (I-35) from State Highway 45 North (SH 45N) in Williamson County to US Highway 290 East (US 290E) in Travis County. The proposed improvements would add one non-tolled managed lane in each direction, reconstruct intersections and bridges to increase bridge clearances and east/west mobility, and improve bicycle and pedestrian accommodations along I-35 frontage roads and at east/west crossings. The project length is approximately 11.5 miles.

2.0 TRAFFIC NOISE ANALYSIS

This analysis was accomplished in accordance with TxDOT's (Federal Highway Administration [FHWA] approved) Guidelines for Analysis and Abatement of Roadway Traffic Noise (2011).

Sound from highway traffic is generated primarily from a vehicle's tires, engine and exhaust. It is commonly measured in decibels and is expressed as "dB."

Sound occurs over a wide range of frequencies. However, not all frequencies are detectable by the human ear; therefore, an adjustment is made to the high and low frequencies to approximate the way an average person hears traffic sounds. This adjustment is called A-weighting and is expressed as "dB(A)."

Also, because traffic sound levels are never constant due to the changing number, type and speed of vehicles, a single value is used to represent the average or equivalent sound level and is expressed as "Leq."

The traffic noise analysis process includes the following elements:

- Identification of land use activity areas that might be impacted by traffic noise.
- Determination of existing noise levels.
- Prediction of future noise levels.
- Identification of possible noise impacts.
- Consideration and evaluation of measures to reduce noise impacts.

The FHWA has established the following Noise Abatement Criteria (NAC), shown in Table 1, for various land use activity areas that are used as one of two means to determine when a traffic noise impact would occur.

Table 1: FHWA Noise Abatement Criteria (NAC)

Activity Category	FHWA dB(A) Leq	Activity Description
A	57 (exterior)	Lands on which serenity and quiet are of extraordinary significance and serve an important public need and where the preservation of those qualities is essential if the area is to continue to serve its intended purpose.
B	67 (exterior)	Residential
C	67 (exterior)	Active sports areas, amphitheaters, auditoriums, campgrounds, cemeteries, day care centers, hospitals, libraries, medical facilities, parks, picnic areas, places of worship, playgrounds, public meeting rooms, public or non-profit institutional structures, radio studios, recordingstudios, recreation areas, Section 4(f) sites, schools, television studios, trails, and trail crossings.
D	52 (interior)	Auditoriums, day care centers, hospitals, libraries, medical facilities, places of worship, public meeting rooms, public or nonprofit institutional structures, radio studios, recordingstudios, schools, and television studios.
E	72 (exterior)	Hotels, motels, offices, restaurants/bars, and other developed lands, properties or activities not included in A-D or F.
F	-	Agriculture, airports, bus yards, emergency services, industrial, logging, maintenance facilities, manufacturing, mining, rail yards, retail facilities, shipyards, utilities (water resources, water treatment, electrical), and warehousing.
G	-	Undeveloped lands that are not permitted.
Source: Guidelines for Analysis and Abatement of Roadway Traffic Noise (TxDOT 2011)		

A noise impact occurs when either the absolute or relative criterion is met:

Absolute criterion - the predicted noise level at the receiver approaches, equals, or exceeds the NAC. "Approach" is defined as one $d B(A)$ below the NAC. For example, a noise impact would occur at a Category B residence if the noise level is predicted to be $66 \mathrm{~dB}(\mathrm{~A})$ or above.

Relative criterion - the predicted noise level substantially exceeds the existing noise level at a receiver even though the predicted noise level does not ap proach, equal, or exceed the NAC. "Substantially exceeds" is defined as more than $10 \mathrm{~dB}(\mathrm{~A})$. For example: a noise impact would occur at a Category B residence if the existing level is $54 \mathrm{~dB}(\mathrm{~A})$ and the predicted level is $65 \mathrm{~dB}(\mathrm{~A})$.

When a traffic noise impact occurs, noise abatement measures must be considered. A noise abatement measure is any positive action taken to reduce the impact of traffic noise on an activity area.

The FHWA traffic noise modeling software was used to calculate existing and predicted traffic noise levels. The model primarily considers the number, type, and speed of vehicles; highway alignment and
grade; cuts, fills, and natural berms; surrounding terrain features; and the locations of activity areas likely to be impacted by the associated traffic noise.

Table 2 and Appendix B shows the traffic data utilized in the l-35 Capital Express North traffic noise models. The vehicle breakdown percentages for each corresponding section of the project (shown in Table 2) were gathered from the data tables supplied by the TxDOT Transportation Planning \& Programming (TPP) Division. As these data tables include the years of 2030 and 2050, a traffic line diagram was generated for the detailed traffic input with traffic volumes for the existing and design years of 2018 and 2038, respectively.

Table 2: Traffic Noise Analysis Parameters

Section/Type	Limits	Speed Limit	Design Hour Volume (K-Factor)	Average Annual Daily Traffic		Vehicle Distribution (\%) DHV		
				2030	2050	Light Duty	Medium Duty	Heavy Duty
Main Lanes: Section 2	S of William Cannonto N of Rundberg	$\begin{gathered} 60-70 \\ \mathrm{mph} \end{gathered}$	5.9	245,200	305,900	96.0	1.1	2.9
Main Lanes: Section 3	N of Rundbergto N of Howard*	70 mph	7.1	209,150	274,500	95.7	1.0	3.3
Frontage Roads: Section 7	S of US 290 Rampsto N of US 290 Ramps	55 mph	7.1	59,050	71,850	97.5	1.7	0.8
Frontage Roads: Section 8	N of US 290 Ramps to N of US 183 Ramps	55 mph	7.1	80,850	91,450	97.8	1.4	0.8
Frontage Roads: Section 9	N of US 183 Rampsto S of Howard Ramps	55 mph	7.1	95,250	124,650	98.0	1.4	0.6
Frontage Roads: Section 10	S of Howard Rampsto N of Howard*	55 mph	7.1	84,000	110,150	97.8	1.4	0.8
Notes: The supplied traffic data includes the entire l-35 Capital Express corridor; however, the above table only includes those sections that are within the I-35 Capital Express North project. *Assumes the extension to the north end of the project.								

Existing and predicted traffic noise levels were modeled at receiver locations (see Table 3 and Appendix A) that represent the land use activity areas adjacent to the project area that might be impacted by traffic noise and might potentially benefit from feasible and reasonable noise abatement Receivers were placed closest to the ROW for locations having more than one area of frequent human activity. NAC category receivers based on interior noise levels were placed in a location closest to the proposed ROW, while still within the structural footprint.

Table 3: Traffic Noise Levels [dB(A) Leq]

Receiver ID	Land Use	NAC Category	NAC Level	Predicted Traffic Noise Level [dB(A) Leq]			Noise Impact
				$\begin{aligned} & \hline \text { Existing } \\ & \text { (2018) } \\ & \hline \end{aligned}$	Predicted (2038)	Change (+/-)	
R1	Hotel	E	72	62	63	+1	N
R2	College	C	67	64	65	+1	N
R3	Restaurant	E	72	67	72	+5	Y
R5	Apartment	B	67	65	68	+3	Y
R6	Restaurant	E	72	71	77	+6	Y
R7	Restaurant	E	72	73	77	+4	Y
R8	Place of Worship	D	52	37	40	+3	N
R9	Apartment	B	67	68	71	+3	Y
R10	Restaurant	E	72	62	65	+3	N
R11	Hotel	E	72	69	71	+2	Y
R12	Cemetery	C	67	58	63	+5	N
R13	Medical Facility	D	52	33	37	+4	N
R14	School	C	67	65	68	+3	Y
R15	Apartment	B	67	69	75	+6	Y
R16	Apartment	B	67	72	75	+3	Y
R17	Apartment	B	67	73	75	+2	Y
R18	School	D	52	31	33	+2	N
R19	Restaurant	E	72	67	69	+2	N
R20	Place of Worship	D	52	29	32	+3	N
R21	Place of Worship	D	52	35	38	+3	N
R22	Cemetery	C	67	71	73	+2	Y
R23	Restaurant	E	72	71	74	+3	Y
R24	School	C	67	59	60	+1	N
R25	Restaurant	E	72	75	77	+2	Y
R26	Memorial	C	67	77	78	+1	Y
R27	Restaurant	E	72	65	69	+4	N

Receiver ID	Land Use	NAC Category	NAC Level	Predicted Traffic Noise Level [dB(A) Leq]			Noise Impact
				$\begin{aligned} & \text { Existing } \\ & \text { (2018) } \end{aligned}$	$\begin{gathered} \text { Predicted } \\ (2038) \end{gathered}$	$\begin{gathered} \text { Change } \\ (+/-) \end{gathered}$	
R28	Restaurant	E	72	68	70	+2	N
R29	Hotel	E	72	62	67	+5	N
R30	Non-profit Institutional Structure	C	67	61	67	+6	Y
R31	Medical Facility	D	52	32	35	+3	N
R32	Restaurant	E	72	67	73	+6	Y
R33	Restaurant	E	72	67	72	+5	Y
R34	Hotel	E	72	67	69	+2	N
R35	Hotel	E	72	67	68	+1	N
R36	Hotel	E	72	67	68	+1	N
R37	Apartment	B	67	71	73	+2	Y
R38	Public Institutional Structure	C	67	75	76	+1	Y
R39	Non-profit Institutional Structure	D	52	31	34	+3	N
R40	Single Family Residential	B	67	71	72	+1	Y
R41	Place of Worship	D	52	38	39	+1	N
R42	Single Family Residential	B	67	73	74	+1	Y
R43	Single Family Residential	B	67	75	76	+1	Y
R44	Single Family Residential	B	67	70	72	+2	Y
R45	Single Family Residential	B	67	76	78	+2	Y
R46	Single Family Residential	B	67	72	76	+4	Y
R47	Single Family Residential	B	67	72	72	0	Y
R48	Apartment	B	67	71	76	+5	Y
R49	Hotel	E	72	74	75	+1	Y
R50	Place of Worship	D	52	32	35	+3	N
R51	Medical Facility	C	67	75	76	+1	Y
R52	Place of Worship	D	52	40	42	+2	N
R53	School	D	52	31	33	+2	N
R54	Hotel	E	72	69	70	+1	N
R55	Restaurant	E	72	71	72	+1	Y

Receiver ID	Land Use	NAC Category	NAC Level	Predicted Traffic Noise Level [dB(A) Leq]			Noise Impact
				$\begin{aligned} & \hline \text { Existing } \\ & \text { (2018) } \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { Predicted } \\ (2038) \\ \hline \end{gathered}$	Change (+/-)	
R56	Hotel	E	72	69	71	+2	Y
R57	Place of Worship	D	52	50	51	+1	Y
R58	Public Institutional Structure	D	52	38	39	+1	N
R59	Apartment	B	67	73	75	+2	Y
R60	Apartment	B	67	73	75	+2	Y
R61	Funeral Home	D	52	39	42	+3	N
R62	Hotel	E	72	73	76	+3	Y
R63	Public Institutional Structure	D	52	37	40	+3	N
R64	Medical Facility	D	52	39	42	+3	N
R65	Medical Facility	D	52	49	51	+2	Y
R66	Day Care	C	67	67	70	+3	Y
R67	Apartment	B	67	75	79	+4	Y
R68	Hotel	E	72	71	73	+2	Y
R69	Hotel	E	72	72	74	+2	Y
R70	Hotel	E	72	66	68	+2	N
R71	Hotel	E	72	71	73	+2	Y
R72	Hotel	E	72	69	72	+3	Y
R73	Apartment	B	67	74	79	+5	Y
R74	Public Institutional Structure	C	67	71	72	+1	Y
R75	Funeral Home	D	52	35	36	+1	N
R76	Hotel	E	72	67	69	+2	N
R77	Place of Worship	C	67	65	67	+2	Y
R78	Hotel	E	72	65	67	+2	N
R79	Restaurant	E	72	69	70	+1	N
R80	Single Family Residential	B	67	72	74	+2	Y
R81	Hotel	E	72	68	71	+3	Y
R82	Hotel	E	72	64	65	+1	N
R83	Hotel	E	72	63	63	0	N
R84	Hotel	E	72	69	71	+2	Y
R85	Restaurant	E	72	69	70	+1	N
R86	Restaurant	E	72	71	73	+2	Y
R87	Hotel	E	72	71	72	+1	Y

Receiver ID	Land Use	NAC Category	NAC Level	Predicted Traffic Noise Level [dB(A) Leq]			Noise Impact
				$\begin{aligned} & \text { Existing } \\ & \text { (2018) } \end{aligned}$	$\begin{gathered} \hline \text { Predicted } \\ (2038) \end{gathered}$	$\begin{gathered} \text { Change } \\ (+/-) \end{gathered}$	
R88	Restaurant	E	72	70	70	0	N
R89	Hotel	E	72	69	69	0	N
R90	Restaurant	E	72	72	71	-1	Y
R91*	Apartment	B	67	72	75	+3	Y
Note: Per TxDOT's 2011 Guidelines for Analysis and Abatement of Roadway Traffic Noise, an interior noise reduction factor of $25 \mathrm{~dB}(\mathrm{~A})$ was applied to receivers R 57 and R 65 , and an interior noise reduction factor of $35 \mathrm{~dB}(\mathrm{~A})$ was applied to all other NAC category "D" receivers. *R91 represents a new apartment development, Embrey Apartments. Future unit and porch locations were determined through development plans, which can be found in AppendixC							

3.0 NOISEABATEMENTMEASURES

As indicated in Table 3, the proposed project would result in a traffic noise impact; therefore, the following noise abatement measures were considered: traffic management, alteration of horizontal and/or vertical alignments, acquisition of undeveloped property to act as a buffer zone, and the construction of noise barriers.

Before any abatement measure can be proposed for incorporation into the proposed project, it must be both feasible and reasonable. In order to be "feasible," the abatement measure must be able to reduce the noise level at greater than 50% of impacted, first row receivers by at least five $d B(A)$; and to be "reasonable," it must not exceed the cost-effectiveness criterion of $\$ 25,000$ for each receiver that would benefit by a reduction of at least five $d B(A)$ and the abatement measure must be able to reduce the noise level for at least one impacted, first row receiver by at least seven $d B(A)$.

Traffic management - Control devices could be used to reduce the speed of the traffic; however, the minor benefit of one $d B(A)$ per five mph reduction in speed does not outweigh the associated increase in congestion and air pollution. Other measures such as time or use restrictions for certain vehicles are prohibited on state highways.

Alteration of horizontal and/or vertical alignments - Any alteration of the existing alignment would displace existing businesses and residences, require additional ROW and not be cost effective/reasonable.

Buffer zone - The acquisition of undeveloped property to act as a buffer zone is designed to avoid rather than abate traffic noise impacts and, therefore, is not feasible.

Noise barriers - This is the most commonly used noise abatement measure. Noise barriers were evaluated for each of the impacted receiver locations.

A noise barrier would not be feasible and reasonable for the following impacted receivers and, therefore, is not proposed for incorporation into the proposed project:

Residences

R40, R44, R47, and R80: These receivers represent exterior areas at single, isolated residences located throughout the l-35 corridor. For each of these receivers, a noise barrier 20 feet in height would not achieve the minimum feasible reduction of five $d B(A)$ or achieve the noise reduction design goal of at least seven $d B(A)$ at one or more receivers. Therefore, a barrier at these locations is not proposed for incorporation into the project.

R5 and R9: These receivers represent exterior areas (i.e., pools or balconies) at various apartment complexes located throughout the I-35 corridor. For all of these receivers, a noise barrier 20 feet in height would not achieve the minimum feasible reduction of five $\mathrm{dB}(\mathrm{A})$ at greater than 50% of impacted, first row receivers and reduce the noise level at one or more receivers by at least seven $d B(A)$. Therefore, a barrier at these locations is not proposed for incorporation into the project.

R37: This receiver represents exterior balconies at an apartment complex located along the l-35 corridor. For this receiver, a noise barrier 20 feet in height would not achieve the minimum feasible reduction of five $\mathrm{dB}(\mathrm{A})$ at greater than 50% of impacted, first row receivers; however, the barrier would reduce the noise level at one or more receivers by at least seven $d B(A)$. Therefore, a barrier at th is location is not proposed for incorporation into the project.

R16: This receiver represents an exterior apartment balcony. For this receiver, a noise barrier 20 feet in height would achieve the minimum feasible reduction of five $d B(A)$ at greater than 50% of impacted, first row receivers; however, the barrier would not reduce the noise level at one or more receivers by at least seven $\mathrm{dB}(\mathrm{A})$. Therefore, a barrier at this location is not proposed for incorporation into the project.

Hotels/Motels

R11, R49, R56, R62, R68-R69, R71-R72, R81, R84, and R87: These receivers represent exterior areas (i.e., pools or seating areas) at various hotels and motels located throughout the l-35 corridor. For all of these receivers, a noise barrier 20 feet in height would not achieve the minimum feasible reduction of five $\mathrm{dB}(\mathrm{A})$ at greater than 50% of impacted, first row receivers and reduce the noise level
at one or more receivers by at least seven $d B(A)$. Therefore, a barrier at these locations is not proposed for incorporation into the project.

Restaurants/Businesses

R3, R6, R23, R25, R32, R55, R86, and R90: These receivers representexterior dining areas at various restaurants and food trucks located throughout the l-35 corridor. For all of these receivers, a noise barrier 20 feet in height would not achieve the minimum feasible reduction of five $d B(A)$ at greater than 50\% of impacted, first row receivers and reduce the noise level at one or more receivers by at least seven $d B(A)$. Therefore, a barrier at these locations is not proposed for incorporation into the project.

R7: This receiver represents an outdoor seating area at a restaurant. A noise barrier 12 feet in height would achieve the minimum feasible reduction of five $d B(A)$ and reduce the noise level by at least seven $d B(A)$; however, the cost of the barrier would exceed the reasonableness criteria of $\$ 25,000$ per benefitted receiver. Therefore, a barrier at this location is not proposed for incorporation into the project.

R33: This receiver represents an exterior dining area at a restaurant located along the I-35 corridor. For this receiver, a noise barrier 20 feet in height would achieve the minimum feasible reduction of five $d B(A)$; however, the barrier would not reduce the noise level by at least seven $d B(A)$. Therefore, a barrier at th is location is not proposed for incorporation into the project.

Churches

R57 and R77: These receivers represent interior (R57) and exterior (R77 - playground) areas at two churches located throughout the I-35 corridor. For both of these receivers, a noise barrier 20 feet in height would not achieve the minimum feasible reduction of five $\mathrm{dB}(\mathrm{A})$ at greater than 50% of impacted, first row receivers and reduce the noise level at one or more receivers by at least seven $d B(A)$. Therefore, a barrier at these locations is not proposed for incorporation into the project.

Schools

R14 and R66: These receivers represent a basketball court at Renaissance Academy (R14), and a playground area at Cedars International Academy (R66). For these receivers, a noise barrier 20 feet in height would not achieve the minimum feasible reduction of five $\mathrm{dB}(\mathrm{A})$ at greater than 50% of impacted, first row receivers and reduce the noise level at one or more receivers by at least seven $d B(A)$. Therefore, a barrier at these locations is not proposed for incorporation into the project.

Public Institutional Structures

R26: This receiver represents a seating area at a police memorial located on the west side of I-35 in front of the Walmart parking lot. A noise barrier 20 feet in height would achieve the minimum feasible reduction of five $\mathrm{dB}(\mathrm{A})$ at greater than 50% of impacted, first row receivers; however, the barrier would not reduce the noise level at one or more receivers by at least seven $\mathrm{dB}(\mathrm{A})$. Therefore, a barrier at this location is not proposed for incorporation into the project.

R30 and R74: These receivers represent an outdoor seating area at the Boy Scouts of America facility (R30) and an outdoor seating area at the TxDOT Austin District campus (R74). For these receivers, a noise barrier 20 feet in height would not achieve the minimum feasible reduction of five $\mathrm{dB}(\mathrm{A})$ at greater than 50\% of impacted, first row receivers and reduce the noise level at one or more receivers by at least seven $\mathrm{dB}(\mathrm{A})$. Therefore, a barrier at these locations is not proposed for incorporation into the project.

R38: This receiver represents a volleyball court at the Texas Commission on Environmental Quality campus. A noise barrier 10 feet in height would achieve the minimum feasible reduction of five $d B(A)$ at greater than 50% of impacted, firstrow receivers and reduce the noise level at one or more receivers by at least seven $\mathrm{dB}(\mathrm{A})$. Based on the size of the average residential lot size of 0.30 acre in the corridor, it was determined that the equivalent number of receivers for the impacted exterior activity area is 1 receiver; thus, the feasible noise barrier of 388 feet in length and 10 feet in height would exceed the reasonableness criteria of $\$ 25,000$ per benefitted receiver. Therefore, a barrier at this location is not proposed for incorporation into the project.

Medical Facilities

R51: This receiver represents an outdoor seating area at Everose Healthcare. A barrier could not be feasibly constructed at this location due to location of the driveway access. Therefore, a barrier at this location is not proposed for incorporation into the project.

R65: This receiver represents an interior location at The Source medical facility. A noise barrier 20 feet in height would notachieve the minimum feasible reduction of five $\mathrm{dB}(\mathrm{A})$ at the representative receiver or achieve the noise reduction design goal of at least seven $\mathrm{dB}(\mathrm{A})$ at one or more receivers. Therefore, a barrier at this location is not proposed for incorporation into the project.

Cemetery (R22): This receiver represents the centroid of the Memorial Hill Cemetery property. A noise barrier 20 feet in height would not achieve the minimum feasible reduction of five $\mathrm{dB}(\mathrm{A})$ at this receiver or achieve the noise reduction design goal of at least seven $\mathrm{dB}(\mathrm{A})$ at one or more receivers. Therefore, a barrier at this location is not proposed for incorporation into the project.

Noise barriers would be feasible and reasonable for the following impacted receivers and, therefore are proposed for incorporation into the proposed project (see Table 4):

Lantower Ambrosio Apartment Complex (R15): This receiver represents the Lantower Ambrosio Apartment complex located on the east side of I-35 south of Wells Branch Parkway. The representative receiver was placed on the outdoor porch of a first-row apartment building and additional receivers were placed on other $1^{\text {st }}, 2^{\text {nd }}$, and $3^{\text {rd }}$ story balconies for purposes of the barrier analysis. Based on preliminary calculations, a barrier 510 feet in length and 16 feet in height would reduce noise levels by at least five $d B(A)$ for 10 of the 15 impacted, first-row receivers and reduce the noise level at one or more receivers by at least seven $\mathrm{dB}(\mathrm{A})$. The total cost of the barrier is $\$ 146,880$ and a total of 18 receivers were benefitted, at a cost of $\$ 8,160$ per benefitted receiver. Therefore, a barrier at this location is proposed for incorporation into the project.

The Vineyard Apartment Complex (R17): This receiver represents the Vineyard Apartment Complex on the east side of I-35 north of The Lakes Boulevard. The representative receiver was placed on the outdoor porch of a first-row apartment building and additional receivers were placed on other $1^{\text {st }}, 2^{\text {nd }}$, and $3^{\text {rd }}$ story balconies for purposes of the barrier analysis. Based on preliminary calculations, a barrier 478 feet in length and 16 feet in height would reduce noise levels by at least five $d B(A)$ for 12 of the 18 impacted, first-row receivers and reduce the noise level at one or more receivers by at least seven $d B(A)$. The total cost of the barrier is $\$ 137,664$ and a total of 21 receivers were benefitted, at a cost of $\$ 6,555$ per benefitted receiver. Therefore, a barrier at this location is proposed for incorporation into the project.

North Oaks Neighborhood (R42-R43, and R45-R46): These receivers represent the North Oaks residential neighborhood on the east side of I-35 north of Braker Lane. The representative receivers were placed in residential backyards, and additional first and second-row receivers were included in the barrier analysis. Based on preliminary calculations, a segmented barrier 2,837 feet in length and 16 feet tall would reduce noise levels by at least five $\mathrm{dB}(\mathrm{A})$ for 25 of the 31 impacted, first-row receivers and reduce the noise level at one or more receivers by at least seven $d B(A)$. The total cost of the barrier is $\$ 817,056$ and a total of 37 receivers were benefitted, at a cost of $\$ 22,082$ per benefitted receiver. However, a segmented barrier 2,837 feet in length and 20 feet tall would reduce noise levels by at least five $d B(A)$ for 25 of the 31 impacted, first-row receivers and reduce the noise level at one or more receivers by at least seven $\mathrm{dB}(\mathrm{A})$. The total cost of th is barrier is $\$ 1,021,320$ and a total of 42 receivers were benefitted, at a cost of $\$ 24,317$ per benefitted receiver. Because a 20 -foot wall would benefit more receivers, it is proposed for incorporation into the project at this location.

Cricket Hollow Apartment Complex (R48): This receiver represents the Cricket Hollow Apartment complex located on the east side of I-35 north of Plaza Drive. The representative receiver was placed on the porch of a $1^{\text {st }}$ floor unit and additional receivers were placed on other $1^{\text {st }}$ and $2^{\text {nd }}$ story balconies for purposes of the barrier analys is. Based on preliminary calculations, a barrier 205 feet in length and 16 feet in height would reduce noise levels by at least five $\mathrm{dB}(\mathrm{A})$ for seven of the eight impacted, firstrow receivers and reduce the noise level at one or more receivers by at least seven $\mathrm{dB}(\mathrm{A})$. The total cost of the barrier is $\$ 59,040$ and a total of ten receivers were benefitted, at a cost of $\$ 5,904$ per benefitted receiver. Therefore, a barrier at this location is proposed for incorporation into the project.

Starburst and Orbit Apartment Complexes (R59 and R60): These receivers represent the adjacent Starburst Apartment complex and Orbit Apartment complex located on the west side of I-35 south of Rundberg Lane. The representative receivers were placed on the outdoor porch of the first-row apartment buildings and additional receivers were placed on other $1^{\text {st }}, 2^{\text {nd }}$, and $3^{\text {rd }}$ story balconies for purposes of the barrier analyses. Though these apartments are on separate parcels, they were analyzed both together and separately for noise abatement. Because a wall would not be feasible for R59 in a standalone analysis, a combined barrier analysis is proposed for maximum abatement. Based on preliminary calculations, a segmented barrier totaling 912 feet in length and 20 feet in height would reduce noise levels by at least five $\mathrm{dB}(\mathrm{A})$ for 31 of the 52 impacted, first-row receivers and reduce the noise level at one or more receivers by at least seven $\mathrm{dB}(\mathrm{A})$. The total cost of the barrier is $\$ 328,320$ and a total of 59 receivers were benefitted, at a cost of $\$ 5,565$ per benefitted receiver. Therefore, a barrier at this location is proposed for incorporation into the project.

Woodland Heights Apartment Complex (R67): This receiver represents the Woodland Heights Apartment complex located on the west side of I-35 north of Powell Lane. The representative receiver was placed on the porch of a $1^{\text {st }}$ floor unit and additional receivers were placed on other $1^{\text {st }}$ and $2^{\text {nd }}$ story balconies for purposes of the barrier analys is. Based on preliminary calculations, a barrier 453 feet in length and 14 feet in height would reduce noise levels by at least five $d B(A)$ for 23 of the 38 impacted, first-row receivers and reduce the noise level at one or more receivers by at least seven $\mathrm{dB}(\mathrm{A})$. The total cost of the barrier is $\$ 114,156$ and a total of 23 receivers were benefitted, at a cost of $\$ 4,963$ per benefitted receiver. Therefore, a barrier at this location is proposed for incorporation into the project.

Towne Oaks 1 Apartment Complex (R73): This receiver represents the Towne Oaks 1 Apartment complex located on the west side of I-35 north of US 183. The representative receiver was placed at the community pool and additional receivers were placed on other $1^{\text {st }}$ story porches for purposes of the barrier analysis. Based on preliminary calculations, a segmented barrier totaling 257 feet in length
and 10 feet in height would reduce noise levels by at least five $\mathrm{dB}(\mathrm{A})$ for two of the three impacted, first-row receivers and reduce the noise level at one or more receivers by at least seven $d B(A)$. The total cost of the barrier is $\$ 46,260$ and a total of two receivers were benefitted, at a cost of $\$ 23,130$ per benefitted receiver. Therefore, a barrier at this location is proposed for incorporation into the project.

Embrey Apartment Complex (R91): This receiver represents the Embrey Apartment complex currently being constructed on the east side of I-35 south of Tech Ridge Boulevard. The representative receiver was placed at the platted location of a first floor unit porch and additional receivers were placed on other first, second, third, and fourth story balconies for purposes of the barrier analysis. Based on preliminary calculations, a segmented barrier totaling 1,206 feet in length and 20 feet in height would reduce noise levels by at least five $\mathrm{dB}(\mathrm{A})$ at 31 of the 60 impacted, first-row receivers and reduce the noise level at one or more receivers by at least seven $d B(A)$. The total cost of the barrier is $\$ 434,160$ and a total of 31 receivers were benefitted, at a cost of $\$ 14,005$ per benefitted receiver.

Table 4: Noise Barrier Proposal (preliminary)

Traffic Noise Barrier					$\begin{aligned} & \text { 苟 } \\ & \frac{0}{؟} \\ & \stackrel{\circ}{\circ} \end{aligned}$	
Lantower Ambrosio Apartment Complex	R15	18	16	510	\$146,880	\$8,160
The Vineyard Apartment Complex	R17	21	16	478	\$137,664	\$6,555
North Oaks Neighborhood	$\begin{aligned} & \text { R42-43, } \\ & \text { R45-R46 } \\ & \hline \end{aligned}$	42	20	2,837	\$1,021,320	\$24,317
Cricket Hollow Apartment Complex	R48	10	16	205	\$59,040	\$5,904
Starburst and Orbit Apartment Complexes	R59, R60	59	20	912	\$328,320	\$5,565
Woodland Heights Apartment Complex	R67	23	14	453	\$114,156	\$4,963
Towne Oaks 1 Apartment Complex	R73	2	10	257	\$46,260	\$23,130
Embrey Apartment Complex	R91	31	20	1,206	\$434,160	\$14,005

Any subsequent project design changes may require a reevaluation of this preliminary noise barrier proposal. The final decision to construct the proposed noise barriers would not be made until completion of the project design, utility evaluation and polling of adjacent property owners. Appendix A depicts the representative noise receivers, as well as the proposed noise barriers that would benefit impacted receivers.

4.0 NOISE PLANNING

To avoid noise impacts that may result from future development of properties adjacent to the proposed project, local officials responsible for land use control programs must ensure, to the maximum extent possible, no new activities are planned or constructed along or within the following predicted (2038) noise impact contours (see Table 5).

Table 5: Traffic Noise Contours [dB(A) Leq]

Location	Distance from ROW	
	NAC Category B \& C $66 \mathrm{~dB}(\mathrm{~A})$	NAC Category E $71 \mathrm{~dB}(\mathrm{~A})$
I-35 (east side) - 280 feet south of Picadilly Dr	>440 feet*	240 feet
I-35 (west side) - 275 feet north of Fleischer Dr	>180 feet*	180 feet
I-35 (east side) - 900 feet south of Ridge Blvd	540 feet	260 feet
I-35 (east side) - 135 feet south of Bowery Trl	>300 feet	220 feet
I-35 (east side) - 200 feet south of Ruby Dr	>200 feet*	120 feet
I-35 (west side) - 135 feet south of Starburst Apts	>300 feet	120 feet
I-35 (east side) - 65 feet south of Hermitage Dr	>220 feet*	160 feet
*Beyond the extent of the undeveloped parcel boundary		

5.0 CONCLUSION

Based on this modeled noise analysis, there are 52 projected noise impacts at representative receivers within the corridor. Barrier analyses were conducted, and results indicated that a barrier would be feasible and reasonable for 12 of the impacted representative receivers.

Noise associated with the construction of the proposed project is difficult to predict. Heavy machinery, the major source of noise in construction, is constantly moving in unpredictable patterns. However, construction normally occurs during daylight hours when occasional loud noises are more tolerable. None of the receivers are expected to be exposed to construction noise for a long duration; therefore, any extended disruption of normal activities is expected. Provisions would be included in the plans and specifications that require the contractor to make every reasonable effort to minimize construction noise through abatement measures such as work-hour controls and proper maintenance of muffler systems.

A copy of this traffic noise analysis would be made available to local officials. On the date of approval of this document (Date of Public Knowledge), FHWA and TxDOT are no longer responsible for providing noise abatement for new development adjacent to the proposed project.

APPENDIX A

REPRESENTATIVE NOISE RECEIVERS EXHIBIT

APPENDIX B

TRAFFIC DATA MEMO

TPP TRAFFIC DATA TABLES
FOR VEHICLE BREAKDOWN PERCENTAGES

TRAFFIC ANALYSIS FOR HIGHWAY DESIGN
Austin Distric
August 22, 2019

TRAFFIC ANALYSIS FOR HIGHWAY DESIGN

TRAFFIC ANALYSIS FOR HIGHWAY DESIGN

TRAFFIC ANALYSIS FOR HIGHWAY DESIGN

SECTION BREAKLINES

TO ACCOMPANY TPP TRAFFIC DATA TABLES

not to scale
Atgalmance

2030, 2050, 2060 forecasteo no-bullo averace daily traff te VOLUMES AND TURNING MOVEMENTS AT SPECIF IED POINTS ALON ANO US 290 FROM AIRPORT BLVO TO US 193

EXISTING (2018) TRAFFIC LINE DIAGRAM
FOR DETAILED TRAFFIC INPUT

2018 EXISTING CONFIGURATION


```
2018 FORECASTED AVERAGE DAILY TRAFF IC VOLUMES 
AND TURNING MOVEMENTS AT SPECIFIED POINTS ALON
AND US 290 FROM AIRPORT BLVD To US 183
and us 290 FROM AIRPORT BLVD TO US 183
```

NOT TO SCALE
Atonunas

2018 EXISTING CONFIGURATION

2018 EXISTING CONFIGURATION

NOT TO SCALE
Atomunce

2018 FORECASTED AVERAGE DAILY TRAFFIC VOLUMES
AND TURNING MOVEMENTS AT SPECIFIED POINTS ALON
IH-35 FROM MAIN ST TO HESTER'S CROSSIN ROAD
AND US 290 FROM AIRPORT BLVD TO US 183

2018 EXISTING CONFIGURATION


```
2018 FORECASTED AVERAGE DAILY TRAFFIC VOLUMES
MND TURNNNG MOVEMENTS AT SLECIF IED POINTT ALON
ANO US 290 FROM AIRPORT BLVD TO US 183
AND US 290 FRom Airport blvo to us 183
```

NOT TO SCALE
Atgaluancs

2018 EXISTING CONFIGURATION


```
2018 FORECASTED AVERAGE DAILY TRAFFIC VOLUMES
MND TURNNNG MOVEMENTS AT SLECIF IED POINTT ALON
AND US 290 FROM AIRPORT BLVD TO US 183
```

NOT TO SCALE
Atgaluanct

2018 EXISTING CONFIGURATION

2018 EXISTING CONFIGURATION


```
2018 FORECASTED AVERAGE DAILY TRAFFIC VOLUMES 
ND TURNING NOVEMENTS AT SPECIFIED POINTS ALONG
AND US 290 FROM AIRPORT BLVD TO US 183
```

NOT TO SCALE
Atonunas

2018 EXISTING CONFIGURATION

NOT TO SCALE
Atgaluancs

```
2018 FORECASTED AVERAGE DAILY TRAFF IC VOLUMES
MND TURNNNG MOVEMENTS AT SLECIFIED POINTT ALON
AH-35 FROM MAIN ST TO HESTER'S CROSSING
And US 290 FROM AIRPORT BLVD To US 183
```


2018 EXISTING CONFIGURATION

NOT TO SCALE
Atanuance

```
018 FORECASTED AVERAGE DAILY TRAFFIC VOLUMES
AND TURNING MOVEMENTS AT SPECIFIED POINTS ALON
AND US 290 FROM AIRPORT BLVD To US 183
AND US 290 FROM AIRPORT BLVD TO US 183
```

CAPITAL EXPRESS
CAPITAL EXPRESS 2018 EXISTING CONFIGLAR VOLUMES
24 HOUR

2018 EXISTING CONFIGURATION


```
2018 FORECASTED AVERAGE DAILY TRAFFIC VOLUMES
AND TURNING MOVEMENTS AT SPECIFIED POINTS ALON
AND US 290 FROM AIRPORT BLVD To US I Im
```

NOT TO SCALE
Atganance

2018 EXISTING CONFIGURATION


```
2018 FORECASTED AVERAGE DAILY TRAFF IC VOLUMES 
MND TURNNNG MOVEMENTS AT SLECIF IED POINTT ALON
ANO US 290 FROM AIRPORT BLVD TO US 183
```

NOT TO SCALE
Atomancs

2018 EXISTING CONFIGURATION

NOT TO SCALE
Atgaluanct

2018 EXISTING CONFIGURATION


```
2018 FORECASTED AVERAGE DAILY TRAFFIC VOLUMES 
AND TURNING MOVEMENTS AT SPECIFIED POINTS ALON
IH-35 FROM MAIN ST TO HESTER'S CROSSING
```

NOT TO SCALE
Atonunas

2018 EXISTING CONFIGURATION


```
2018 FORECASTED AVERAGE DAILY TRAFFIC VOLUMES 
MND TURNNNG MOVEMENTS AT SLECIF IED POINTT ALON
ANO US 290 FROM AIRPORT BLVD TO US 183
```

NOT TO SCALE
Atgaluanct

2018 EXISTING CONFIGURATION

2018 EXISTING CONFIGURATION

2018 EXISTING CONFIGURATION

2018 EXISTING CONFIGURATION

NOT TO SCALE
Atgaluanct

2018 EXISTING CONFIGURATION

NOT TO SCALE
Atgaluancs

```
2018 FORECASTED AVERAGE DAILY TRAFFIC VOLUMES
MND TURNNNG MOVEMENTS AT SLECIF IED POINTT ALON
ANO US 290 FROM AIRPORT BLVD TO US 183
```


NOT TO SCALE
Atganancs

```
2018 FORECASTED AVERAGE DAILY TRAFFIC VOLUMES 
MND TURNNNG MOVEMENTS AT SLECIF IED POINTT ALON
ANO US 290 FROM AIRPORT BLVD To US 183
AND US 290 FROM AIRPORT BLVD TO US 183
```

2018 EXISTING CONFIGURATION

NOT TO SCALE
Atgaluancs

```
2018 FORECASTED AVERAGE DAILY TRAFF IC VOLUMES 
MND TURNNNG MOVEMENTS AT SLECIF IED POINTT ALON
AND US 290 FROM AIRPORT BLVD To US 183
```


2018 EXISTING CONFIGURATION


```
2018 FORECASTED AVERAGE DAILY TRAFF IC VOLUMES 
MND TURNNNG MOVEMENTS AT SLECIF IED POINTT ALON
ANO US 290 FROM AIRPORT BLVD TO US 183
```

NOT TO SCALE
Atomancs

2018 EXISTING CONFIGURATION

2018 EXISTING CONFIGURATION

NOT TO SCALE
Atgaluancs

PROPOSED (2038) TRAFFIC LINE DIAGRAM
FOR DETAILED TRAFFIC INPUT

APPENDIX C

Planned Development Plats

